Collisione galattica - IW6ON - C.I.S.A.R. - Associazione Italiana Radioamatori Giulianova

Cerca
Vai ai contenuti

Menu principale:

Collisione galattica

Radioastronomia
 
 


APPUNTI DI RADIOASTRONOMIA
a cura di Giovanni Lorusso IK0ELN
IARA Group, SAIt, SdR Radioastronomia UAI



 
Una pulsar, nome che stava originariamente per sorgente radio pulsante, è una stella di neutroni, nome derivante dal fatto che contiene 20 volte più neutroni che protoni. Nelle prime fasi della sua formazione, in cui ruota molto velocemente, la sua radiazione elettromagnetica in coni ristretti è osservata come impulsi emessi ad intervalli estremamente regolari. Nel caso di pulsar ordinarie, la loro massa è pari a quella del Sole, ma è compressa in un raggio di una decina di chilometri, quindi la loro densità è enorme. Il fascio di onde radio emesso dalla stella è causato dall'azione combinata del campo magnetico e della rotazione. Le pulsar si formano quando una stella esplode come supernova II, mentre le sue regioni interne collassano in una stella di neutroni congelando ed ingigantendo il campo magnetico originario. La velocità di rotazione alla superficie di una pulsar è variabile e dipende dal numero di rotazioni a secondo sul proprio asse e dal suo raggio. Nel caso di pulsar con emissioni a frequenze del kHz la velocità superficiale può arrivare ad essere una frazione significativa della velocità della luce, a velocità di 70.000 km/s.

Area di Ricerca SETI

COLLISIONE GALATTICA
 
<< Anche la più breve contemplazione del Cosmo ci commuove. Un brivido ci percorre la schiena e la voce rimane intrappolata in gola. Siamo coscienti di avvicinarci al più grande dei mestieri >>
(Carl Sagan)

Si che aveva ragione il grande astronomo, padre del progetto SETI, quando faceva queste affermazioni. Oggi, grazie ai potenti telescopi e radiotelescopi del nostro secolo, è facile puntare il dito è dire: … questa è una stella pulsar; quello è un quasar; quella è una nebulosa; l’altra è una galassia … Già, una Galassia! E pensare che fino ad un secolo fa non si concepiva nemmeno il concetto di cosa fosse una galassia. Fu poi Friedrich Wilhelm Herschel, alla fine del 18° secolo cominciò ad interessarsi degli oggetti del cielo profondo; e mentre si accingeva a compilare i sui cataloghi stellari, fu incuriosito da strani oggetti a forma di girandole con una nebulosità che volle catalogare sotto il nome di Nebulose a Spirale. Tra queste, anche la Nebulosa di Andromeda, da lui ritenuta la più vicina visibile anche a occhio nudo. Finalmente Herschel era riuscito ad osservare la Galassia di Andromeda (Fig.1) già osservata nel 964 dall’astronomo persiano Abd al Rahman al Suf; nota anche come Grande Nebulosa di Andromeda e catalogata come M 31. La Galassia di Andromeda è una galassia a spirale di enormi dimensioni e si trova a circa 2,538 milioni di anni luce dalla Terra, vicina alla nostra Galassia, la Via Lattea (Fig.2) E a causa della vicinanza con la nostra galassia, potrebbe avvenire una collisione galattica tra Andromeda e la Via Lattea; questa è una ipotesi che potrebbe avere luogo tra circa quattro miliardi di anni; ma è improbabile che oggetti celesti di ciascuna galassia possano scontrarsi tra loro, in quanto la distanza tra i singoli oggetti all'interno delle galassie è abbastanza alto. Infatti proviamo ad immaginare il Sole dalle dimensioni di una moneta, la stella più vicina si troverebbe a quasi 800 km di distanza. Ebbene, se la teoria è corretta, le stelle e i gas contenuti nella Galassia di Andromeda saranno visibili ad occhio nudo tra circa tre miliardi di anni. Per cui se la collisione avrà luogo, le due galassie si fonderanno l'una con l'altra, senza collidere con i rispettivi oggetti celesti entro contenuti. Va detto però che non è dato sapere se la collisione avverrà al certo di entrambe la galassie oppure lateralmente. Sappiamo soltanto che la velocità radiale della Galassia di Andromeda, rispetto a quella della Via Lattea, può essere misurata esaminando lo spostamento Dopller (Bluschift) e non può essere misurata direttamente. Cosi come, si conosce la velocità di Andromeda, pari a circa 120 km/s, ma non si può prevedere se avverrà lo scontro tra le due galassie, oppure avvicineranno senza “farsi male”! A tale scopo, nel 2013 l’ESA inviò il satellite Gaia, con lo scopo di misurare la posizione delle stelle di Andromeda con sufficiente precisione utile a rilevare la velocità trasversa. Inoltre permane l’ipotesi che il nostro Sistema Solare verrà espulso per un tempo indefinito dalla nuova galassia; ciò nonostante l’ evento non dovrebbe avere effetti negativi sul sistema. Quindi cambiamenti quali: disturbo al Sole o ai pianeti sono da considerarsi di possibilità remota anche perché in quel momento il Sole si sarà già avviato da tempo verso la fase di Stella Gigante Rossa o, addirittura, si sarà già trasformato in una Nebulosa Planetaria E dopo la fusione tra le due galassia, i posteri come chiamerebbero la nuova galassia gigante? Fondendo i vecchi nominativi Via Lattea e Andromeda), probabilmente la nuova galassia gigante verrà catalogata con il nome di Lattomeda (in inglese, Milkomeda). Ma come ci si è accorti che la Galassia di Andromeda si fonderà con la Via Lattea? Ordunque il primo a studiare questo fenomeno astronomico fu Edwin Hubble (Fig.3) nel 1929, quando annunciò che quasi tutte le galassie si allontanarsi da noi. Infatti, scoprì che l'Universo si sta espandendo, e che tutte le galassie si stanno allontanavano l'una dall'altra. Il fenomeno si rilevava dallo spostamento verso il rosso (il Redshft) della radiazione emessa da queste galassie.  Il Redshift 
diventa tanto maggiore quanto più distante è la galassia; cioè le galassie più lontane sono quelle che si allontanano più velocemente da noi. Viceversa le galassie che si avvicinano a noi si deduce dallo spostamento verso il blu (Bluschift). E’ quanto sta avvenendo alla Galassia di Andromeda. Per capire bene il concetto, pensiamo ad una ambulanza che si avvicina a noi, a sirene spiegate. Mentre siamo fermi sul marciapiede. Quando ancora lontana, la sirena dell’ambulanza emetterà un suono che, man mano si avvicina, cambierà tonalità; di pari avverrà quando si sarà allontanata. Il fenomeno prende il nome di Effetto Doppler, il quale in banda ottica evidenziava l’allontanamento o l’avvicinamento dei corpi celesti. Ma chi era Edwin Hubble? Questo nome ci salta alla mente quando parliamo del telescopio spaziale Hubble, l’Hubble Space Telescope (Fig.4) a cui la Comunità Scientifica aveva assegnato il nome in sua memoria. Edwin Powell Hubble nacque il 20 Novembre 1889 a Marshfieldn, nel Missouri (USA). Astronomo e astrofisico, Hubble è noto principalmente per aver formulato nel 1929 la legge empirica dei Redshift, ovvero lo Spostamenti Verso il Rosso; oggi definita Legge di Hubble. Ma anche per il famoso telescopio spaziale Hubble Space Telescope (H.S.T.), che dal 24 Aprile 1990 orbita intorno alla Terra a circa 600 Km in orbita terrestre bassa ed è attualmente operativo. L'H.S.T. è uno dei più versatili strumenti di ricerca spaziale, anche perché svolge attività di ricerca della vita nello spazio. Tuttavia, sebbene ancora efficiente, l’H.S.T. sarà sostituito dal telescopio spaziale James Webb Space Telescope, J.W.S.T. (Fig.5) che sarà lanciato dallo spazioporto Arianspace di Kourou, nella Guiana Francvese nella primavera del 2019. Con una potenzialità di bel tre volte rispetto all’H.S.T., il JWST effettuerà osservazioni spaziali su varie gamme dello spettro elettromagnetico compresi i raggi infrarossi. Probabilmente capiremo meglio quel 95% di materia ed energia oscura, di cui è composto l’Universo, non ancora visibili; il perché di molte galassie rimangono unite grazie ad enormi buchi neri collocati nel loro centro; e se tutto ciò che esiste è frutto dell’interazione di poche particelle elementari, o ce dell’altro. Insomma, un Universo a più portata di mano! 

 Dott. Giovanni Lorusso (IK0ELN)
VLBI. La Very Long Baseline Interferometry (VLBI) (Interferometria a Base Molto Ampia) è una tecnica di interferometria astronomica utilizzata in radioastronomia. In VLBI un segnale emesso da una radiosorgente, quale un quasar, viene raccolto da più radiotelescopi dislocati sulla Terra. Viene quindi calcolata la distanza tra i radiotelescopi del sistema rilevando la differenza di tempo del segnale sorgente in arrivo ai diversi telescopi. Questo consente di effettuare l'osservazione di un oggetto tramite molti radiotelescopi la cui risultante è una combinata simultanea, emulando così un telescopio di dimensioni pari alla massima distanza tra i telescopi del sistema. I dati ricevuti da ogni antenna del sistema includono i tempi di arrivo sincronizzati con un orologio atomico locale, come un maser all'idrogeno. In un secondo momento, i dati sono combinati con quelli provenienti dalle altre antenne che hanno registrato lo stesso segnale radio, producendo l'immagine risultante. La risoluzione ottenibile utilizzando la tecnica interferometrica è proporzionale alla frequenza di osservazione. La tecnica VLBI consente una distanza tra i telescopi molto maggiore di quella possibile con l'interferometria convenzionale, che richiede che le antenne siano fisicamente collegate tramite cavo coassiale, guida d'onda, fibra ottica o altro tipo di trasmissione cablata. L'incremento della distanza tra i telescopi è possibile nella VLBI grazie allo sviluppo della tecnica di imaging chiamata closure phase, sviluppata da Roger Jennison negli anni 1950, che consente al sistema VLBI di produrre immagini con una risoluzione ben superiore. La VLBI è sfruttata maggiormente per l'imaging di radiosorgenti cosmiche lontane, il monitoraggio di veicoli spaziali e per applicazioni in astrometria. Inoltre, poiché la tecnica VLBI misura le differenze di tempo tra l'arrivo delle onde radio sorgenti alle varie antenne del sistema, può essere utilizzata anche al contrario per eseguire studi sulla rotazione terrestre, precise mappature millimetriche dei movimenti delle placche tettoniche ed altri tipi di studi geodetici. Tale tecnica richiede una notevole mole di misurazioni di differenze temporali per un segnale in entrata da una sorgente a notevole distanza (come un quasar) studiato per un certo periodo di tempo da una rete mondiale di antenne.
 
Torna ai contenuti | Torna al menu