Appunti di Radioastronomia: - IW6ON - C.I.S.A.R. - Associazione Italiana Radioamatori Giulianova

Cerca
Vai ai contenuti

Menu principale:

Appunti di Radioastronomia:

Radioastronomia
 


APPUNTI DI RADIOASTRONOMIA
a cura di Giovanni Lorusso IK0ELN
IARA Group, SAIt, SdR Radioastronomia UAI



 
Nell'Apocalisse gli angeli versano «le sette coppe dell'ira di Dio» sulla Terra. L'Armageddon viene dopo il versamento della sesta coppa: « Poi il sesto angelo versò la sua coppa sul gran fiume Eufrate, e le sue acque si prosciugarono perché fosse preparata la via ai re che vengono dall'Oriente. E vidi uscire dalla bocca del dragone, da quella della bestia e da quella del falso profeta tre spiriti immondi, simili a rane. Essi sono spiriti di demoni capaci di compiere dei miracoli. Essi vanno dai re di tutta la terra per radunarli per la battaglia del gran giorno del Dio onnipotente. (Ecco, io vengo come un ladro; beato chi veglia e custodisce le sue vesti perché non cammini nudo e non si veda la sua vergogna).) E radunarono i re nel luogo che in ebraico si chiama Harmaghedon.» Resurrezione dei morti. Particolare del rosone rappresentante l'Apocalisse nella chiesa Sainte-Chapelle, Parigi, ca. 1200. Questo passaggio è ambiguo, non è chiaro se vi è davvero successo qualcosa o se il raduno degli eserciti è solo un simbolo. Infatti, vi fu in quel posto un raduno dell'esercito romano in preparazione di uno degli attacchi a Gerusalemme nel 67 d.C.



2014 Anno Internazionale della Cristallografia

E' MORTA UNA STELLA


Precisiamo subito che non si tratta di una stella del varietà, ma di un corpo celeste simile al nostro Sole giunto alla fine della sua esistenza: una Supernova. Trattasi della SN 2014J della Galassia M.82 del Catalogo Messier (*) distante dalla Terra dodici milioni di anni luce, nella Costellazione dell'Orsa Maggiore (Fig.1). Per chi volesse tentare l'osservazione di questo oggetto celeste è sufficiente un binocolo casalingo 10x50 oppure un piccolo telescopio amatoriale, avvalendosi della mappa stellare allegata (Fig.2) e, dopo il puntamento verso il Grande Carro, seguire la direzione delle stelle Phad e Dubhe. La scoperta è avvenuta casualmente all'inizio dell'anno, il 21 Gennaio 2014, presso l'osservatorio astronomico dell'Università di Londra, da un docente, l'astronomo Steve Fossey, che stava tenendo una lezione ai sui studenti sull'uso della strumentazione astronomica dell'Università (Fig.3); quando, la sua attenzione è stata richiamata da una enorme nube di idrogeno in espansione a 20.mila Km/s ben visibile nella Galassia M.82. Diramata immediatamente la notizia della scoperta, sono stati immediatamente mobilitati il Telescopio Spaziale Hubble, il Telescopio Spaziale Spitzer ed il Telescopio Nazionale Galilei, che hanno confermato l'esplosione di una stella Supernova; la decima esplosione termonucleare dall'inizio dell'anno. Adesso però è tempo di porsi alcune domande: Che cos'è una Supernova? Come si formano le Supernove? Perché esplodono? Per poter dare una risposta a queste domande, occorre capire in che modo si forma una stella ed il ciclo della sua vita. Ebbene, una stella si forma quando una grande quantità di gas, composto in massima parte di idrogeno, comincia a contrarsi a causa della sua attrazione gravitazionale. In tale collasso accade che gli atomi presenti nei gas entrano in collisione tra di loro ad elevatissima velocità, procurando il riscaldamento dei gas. E quando la temperatura sarà elevata gli atomi di idrogeno non rimbalzano più, ma si fondono assieme e formano l'elio. Attraverso il calore liberato, simile all'esplosione di una bomba ad idrogeno, avviene lo splendore della stella. Ma non è tutto, perché questo calore aggiuntivo aumenta la pressione del gas fino al punto di controbilanciare l'attrazione gravitazionale; così che il gas smette di contrarsi: E' nata una stella! Cosi è nato anche il Sole dieci miliardi di anni fa. Ma, veniamo alle Supernove. Dunque, una Supernova è una stella come il nostro Sole, ma con una massa molto più grande, la quale, dopo la combustione totale dell'idrogeno nel suo nucleo centrale, di lei, resta soltanto un nucleo di ferro, circondato da strati, i quali, a temperature sempre più decrescenti, bruciano altri elementi: zolfo, cloro, carbonio, neon, elio. Questa struttura a cipolla di gas che ricoprono la stella precede la fase finale della spaventosa esplosione, nella quale la stella scaglia nello spazio una enorme quantità della propria massa, mentre il nucleo ferroso implode formando una stella di neutroni. La fase finale della stella prende il nome di "Stella Nova", oppure di "Supernova" se trattasi di una stella supergigante rossa. E' ovvio immaginare che l'esplosione di una Supernova comporta più energia di una Nova; che la stella, dopo l'esplosione, diventa molto luminosa a causa della enorme quantità di radiazione emessa, tale da superare quella della sua galassia. Vediamo adesso quale è il limite di accrescimento di una stella che la rende una Stella Gigante o Supergigante, cioè "Il limite di Chandrasekhar". Subrahmanyan Chandrasekhar, per gli amici Chandra, era un giovane fisico astronomico indiano, il quale si dedico completamente allo studio delle stelle giganti, scoprendo che ogni stella deve avere un limite di massa da non oltrepassare, strettamente correlato all'energia termonucleare dovuta alla fusione degli atomi di idrogeno e la forza gravitazionale, superato il quale, la stella esplode liberandosi della massa superflua di gas che la ricopre, trasformandosi, quindi, in una Supernova, con un nucleo centrale composto solo di neutroni o, addirittura, formando un Buco Nero! A differenza di stelle meno massicce, le quali, alla fine della loro esistenza, dopo aver bruciato completamente il loro combustibile, diventano Stelle Nane Bianche. Per questa scoperta, nel 1983, la Comunità Scientifica Internazionale assegnò a Chandrasekhar il Premio Nobel per la Fisica. Vediamo perciò che "l'obesità" delle stelle nella loro fase di accrescimento li porta a concludere la loro esistenza molto tempo prima rispetto alle stelle meno massicce come il nostro Sole. Volendo indicare un termine di paragone è facile capire che una autovettura di grossa cilindrata, a parità di chilometri con una autovettura di piccola cilindrata, consumerà più carburante e si fermerà prima per strada! Il 21 Gennaio 2014, l'uomo è stato testimone di un evento astronomico davvero eccezionale: la morte di una stella; ma non va dimenticato che questo oggetto celeste dista dal nostro pianeta dodici milioni di anni luce; perciò, qualcosa che è accaduto ben dodici milioni di anni luce indietro nel tempo; e che, soltanto oggi abbiamo potuto osservarlo (**). Come tutti gli abitanti dell'Universo anche le stelle nascono è muoiono E' una legge Universale! Ma, quali sono gli effetti collaterali per i radioamatori? I Raggi Cosmici prodotti dall'esplosione di una stella, producono particelle elettrizzate, le quali riescono a penetrare nell'atmosfera terrestre e subiscono l'influenza del campo magnetico del nostro pianeta, producendo un incurvamento della loro traiettoria rettilinea. Così facendo, le particelle emettono una radiazione ondulatoria che va ad interferire con le onde elettromagnetiche emesse dalle stazioni radio terrestri, ivi comprese le stazioni di radioamatore.

Cieli Sereni
di ikØeln Giovanni Lorusso



- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -


(*) Il Catalogo Messier prende il nome dal suo compilatore: l'astronomo francese Charles Messier, e riporta nel suo interno ben 110 oggetti celesti da lui osservati: Galassie, Nebulose, Ammassi Stellari, e catalogati da M.1 a M.110. Il Catalogo fu pubblicato nell'anno 1781, stampato il 1784, ed è tuttora utilizzato.

(**) Un esempio per capire bene la legge dello Spazio/Tempo è sufficiente pensare che il Sole dista dalla Terra 150.milioni di Km e che la sua immagine giunge alle nostre pupille dopo 8 minuti, viaggiando alla velocità della luce, cioè a 300.000 Km/s. Così che, se per assurdo il Sole si spegnesse di colpo, noi continueremmo a vedere la sua immagine ancora per 8 minuti. Uno scenario previsto tra circa 5 miliardi di anni, quando il Sole avrà bruciato tutto il suo combustibile.


Esistono tre tipi differenti di neutrino: il neutrino elettronico νe, il neutrino muonico νμ e il neutrino tauonico ντ, in diretta relazione rispettivamente con i leptoni del modello standard (elettrone, muone e tauone). La gran parte dell'energia di una supernova collassante viene irradiata in forma di neutrini, prodotti quando i protoni e gli elettroni del nucleo si combinano a formare neutroni. Questa reazione produce un flusso considerevole di neutrini. La prima prova sperimentale di questo fatto si ebbe nel 1987, quando vennero rilevati i neutrini provenienti dalla supernova 1987a. La massa dei neutrini e le sue conseguenze. Nel Modello Standard (MS) i neutrini sono ipotizzati esistere privi di massa. Tuttavia, esperimenti recenti suggeriscono che ciò sia falso. Infatti, flussi di neutrini possono oscillare tra i tre autostati di interazione, in un fenomeno conosciuto come oscillazione dei neutrini (che fornisce una soluzione al problema dei neutrini solari e a quello dei neutrini atmosferici). Questo, inevitabilmente, induce a modificare il MS, introducendo dei termini nuovi per soddisfare la richiesta che i neutrini siano particelle dotate di massa.
 
Torna ai contenuti | Torna al menu